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Abstract —The generalized spectral-domain (GSD) technique,
which was developed and tested for some special cases in [11, is
applied to the analysis of rectangular waveguides with rectangu-
lar and circular metal inserts. These include conventional ridge
waveguides, circular-ridge waveguides, and rectangular coaxial
lines with either rectangular or circular inner conductors. The
numerical results show that the edge behavior of the electromag-
netic field described in [2] is incomplete. A constant term must
be added to the expansion of the magnetic field component
which is parallel to the edge. Excellent agreement with other
publications is achieved, with a drastic reduction of CPU time
for the conventional ridge waveguide. The accuracy of the re-

sults is demonstrated by two- and three-dimensional plots of the
field distributions.

I. INTRODUCTION

G ALERKIN’s method in the spectral domain, which

is known in the literature simply as the spectral-

domain (SD) technique, has been developed and applied

to the analysis of a variety of planar structures (see, e.g.,

[3]-[7]). It has proved to be a very efficient method with

respect to accuracy, CPU time, and storage requirements.

On the other hand, the method is restricted to the analy-

sis of structures with infinitely thin metal sheets.

In the general analysis of waveguides with metal in-

serts, which was recently presented in [1], two formula-

tions have been developed: the matrix formulation and

the moment method formulation. The latter is a general-

ization of the SD technique which can analyze waveguides

with electrically thick metal inserts as well. It will be

called the generalized spectral-domain (GSD) technique.

It has been shown in [1] that applying the GSD technique

to planar structures leads to the same equations as the

conventional SD technique. In this paper, the GSD tech-

nique is applied to rectangular waveguides with rectangu-

lar or circular metal inserts. These include conventional

ridge waveguides, ridge waveguides with half circular
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ridges, and rectangular coaxial waveguides with either

rectangular or circular inner conductors.

According to [1], the axial magnetic field or the normal

electric field at the surface of the metal insert is expanded

with respect to suitable basis functions which satisfy the

edge conditions, if any. The vanishing of the tangential

electric field or the normal magnetic field at the metal

surface is then tested by the same basis functions (Galer-

kin’s procedure). If the basis functions for the axial mag-

netic field are chosen to satisfy the edge conditions given

in [2], the resulting field would not identically vanish

inside the metal insert. Such basis functions must become

zero as the edge is approached [2]. The right field can be

obtained if an additional basis function is used, which

becomes a constant as the edge is approached. This is an

indication that the edge conditions described in [2] are

not complete.

II. BASIC FORMULATION

Consider the waveguide with metal insert shown in Fig.

1. The direction of propagation, in which the structure is

uniform, is taken along the z axis with a corresponding

propagation constant ~. As has been shown in [1], TE

modes are expressed as

(1)

where h,, h, and e are the axial magnetic, transverse

magnetic, and transverse electric field, respectively, with

the z dependence e
–IBZ beingsuppressed, h zn

(ezn) is the

axial magnetic (electric) field of the nth TE (TM) mode in

the hollow waveguide (i.e., with the metal insert SO re-

moved), and k.h (kJ is the corresponding cutoff wave-
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Fig. 1. Cross section of a waveguide with a metal insert.

number. Pnh (Pn,) is the integral of h~~ (e~~) over the

hollow waveguide cross section S; V, and /! are the

transverse component of the del operator and the unit

vector in the axial direction, respectivelfi and a~~) and

b(h) are expansion coefficients to be determined.
nAccording to the moment method formulation [1], the

axial magnetic field, hz~ at the contour CO is expanded in

terms of suitable basis functions qi as

~zlco= Zh. (2)
i

The expansion coefficients u~~) and b~h) are given in

terms of 1, according to

fi(h) = $[Ae]-’/2[@]I.
c

(3)

Here a(h), b(~), and 1 are column vectors with elements

a(~) b~k), and Ii, respectively, [Ah] ([A’]) is a diagonal

mna&x with elements k~h (k;.), [11 is the identity matr~,

and kC is the yet undetermined cutoff wavenumber (kf =

k; – ~2). The elements of [c~~] and [Cke] are given by

k: and the corresponding 1 are determined by solving the

characteristic equation

(k~[Chh]’(k~[l] -[ Ah]) -’[C’h]+[Che]’[ Che])z

=[2]1=0 (5)

where the superscript t denotes the transpose of the

matrix. TM modes, on the other hand, are expressed as

– k; @
e= = — E —e..

jBn JZ

2V,ezn

‘=%2?

(6)

where e= is the axial electric field and a$) are expansion

coefficients to be determined. Expanding the normal elec-

tric field (A. e) at the contour CO in terms of suitable

basis function ~, as

(fie)lco=z~fj (7)
i

the expansion coefficients a$) are given in terms of ~.

according to

a(’J=(k~[I] –[A’])-l[C”]V (8)

where a(e) and V are column vectors with elements a$)

and ~, respectively. The elements of [ C“] are given by

(9)

k: and the corresponding P’ are determined by solving the

characteristic equation

[C’’] ’(k~[Z]-[Ae])-l[ C’e]v=[Y]v=O. (10)

III. RECTANGULAR INSERTS

Fig. 2(a) shows the cross section of a conventional ridge

waveguide, while Fig. 2(b) shows that of a rectangular

coaxial line. The rectangular coaxial line has recently

been proposed [8] for applications in communication

satellites. If we utilize symmetry, only one quarter of

either structure needs to be analyzed, e.g. That shown in

Fig. 2(c).

If h, and (fl. e) in (2) and (7), respectively, are rewrit-

ten as

[

—e,ly=y“
= ~ Jpfy(x), 0< ~ < ~o

(fi. e)lco=
+ e.tlx=xo = iZ(2)fj2)(Y), Y. <Y<LI

i
1(12)

the characteristic equations in (5) and (10), respectively,

can be written as

[ .][1

[2(10] [-p)] ~(l) = o

((13)
[z(”q [z@q p

[ ][ 1

[y(n)] [y(l’)] ~(l) = o

[Y@’)] [y(**)] @)
([14)

where 1(1), Z(2), P’(l), and V(2) are column vectors with

elements l~lJ, 1:2), V,(l), and ~(z), respectively.
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Fig. 2. (a) Cross section of a conventional ridge waveguide. (b) Cross section of a rectangular coaxial line. (c)A quarter of
either structure,

TE Modes

Only one type of symmetry will be considered, namely

that with a magnetic wall at side x = O and electric walls

at the other three sides. Modes with this type of symmetry

include the dominant mode of the symmetrical ridge

waveguide. Other types of symmetry can similarly be

analyzed. The basis functions ~~l)(x) and qjz)( y ), which

satisfy the 90’ edge conditions at (x ~, ye), must behave

like lx – X012’3 and Iy – y012’3 as x ~ XO and y -+ yO,

respectively, [2]. They are given by

~=l,z,.... (15)

Following the procedure described in [1] for TM modes,

the elements of the [Z] matrix in (13) are given by

sin Z~(7 – ~0) sin @.@O
2(11) = – ; ; En

l] fi::)fij:)

~=1 sin G~m-

2:;2) = ; 5 (n – 1/2)
~=1

cos ( n – 1/2)90 sin i7.@0
-(1)7(2) = Z(21)
~,?l ~],, J,

sin .Z~7r

Z:p= -; ~ (l+amo)~m
~=o

—
sin~n(m – $’0) cos ‘Y~Po .(2) -(2)

vLm’TJwL (16)
Cos T_T, r,,

where

7TX0
q)o=— *0+

a

I~V(im –(n -1/2)qo)

‘i~:)= ’90 (hi- -(n -1/2)9.)”

.7u(i7r +(n –1/2)9.)
—

(i7T+(n-1/’2)90)v 1
[

~ (n-- @o) J.((i-l/2)T -nz(m -40))
i%!=~(-l) (l+amo) ((i-1 /2)m-m(~-vo))”

+Ju((i– 1/2) T+nz(m -40))

((i-1 /2) T+m(T -4,))” 1
Ilu((i–1/2)7 –i2n(m-ljo))

;j:) = K(7j- – @o)
((i-1 /2)m-tin(T-oo))v

+Jv((i– 1/2)m+En(m– 40))

((i -1/2)Tr + Zn(tl- - @o))” 1 (17)

where K = 2- 5/6r- lf217(2/3) = 0.428769, JU(X) = Bessel

function of the first kind, v = 1/6, and 8no = Kronecker

delta.

If the convergence of the series in (16) is investigated, it

can easily be shown that the sum terms in z~~l) and 2$2)

behave like n-7/3 as n -+ ~ and that the sum term in Z~~)

behaves like m
–7/3 as m ~ m (see, e.g+7

[9] for the asymp-

totic value of the Bessel functions).

The axial magnetic field as given by (11) and (15)

vanishes at the edge (xo, ye). The numerical results based

on this assumption, however, turned out to be incorrect.

Fig. 3 shows a three-dimensional plot of the axial mag-

netic field, h=, corresponding to the dominant mode in a

ridge waveguide as a function of the transverse coordi-

nates. Although the field possesses a step discontinuity at

the ridge surfaces, it does not identically vanish over the
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O.xz
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Fig. 3. A three-dimensional plot of the axial magnetic field, h=, corre-
sponding to the dominant mode in a ridge waveguide (the basis func-
tions in (18) are not considered).Parameters:(a/b)= 1.0, (XO /a)= 0.3,

(Y(J/a)=o.7.

ridge. This effect is found to be independent of the

number of basis functions in (15), which indicates that

these functions are not a complete set.

A detailed investigation of the edge conditions derived

in [2] has shown that the edge behavior of the magnetic

field component which is parallel to the edge has been

assumed tct be identical to that of the corresponding

electric field component. This assumption is, however,

incorrect because of the different boundary conditions

which must be satisfied by these two components. The

derivation of the edge conditions given in [10] shows that

although the electric field component whicli is parallel to

the edge must vanish at the edge, the corresponding

magnetic field component can approach a constant value

there. The liigher spatial derivatives of the two ~ompo-

nents are similar and obey the analysis of [2]. This ex-

plains the incompleteness of the basis functions given in

(15), which vanish at the edge. Additional basis functions,

which approach a constant value at the edge, are hence

necessary.

The analysis presented above remains valid if the fol-

lowing basis functions are added to those given in (15):

m-x
q~l)( x) = sin —

2X0

q$)(y)=l. (18)

The corresponding Fourier transforms cannot be incorpo-

rated in (17) with i = O because (17) is valid only for the

basis functions given in (15). Instead, they are given by

-(1) _ 2$4 (n – 1/2) Cos(n – 1/2)90

~o~- ‘iT [( T/2)2 -(rz-l/42981

2- (2) _
~sinrn(m-+o)

(-1) ~
‘om – %-(1+ ‘3mo)

Investigating the convergence of series in

(19)

16) for

\ .x

Fig. 4. 7‘he same plot as in Fig. 3, with the basis functions in (18)

considered.

(i # O,j = O) shows that the sum terms in 2$1), 2$2), and

2$2) behave like n –51A ~–5/3, and ~–s13 as n +CC and

m ~ CO,respectively, wh~ch means that the series are still

convergent. on the other hand, Z&l), Zf~2), and Z& do

not converge at all because their sum terms behave like

n-l, n-’, and m-l as n e @ and m e CXJ,respectively.

This numerical problem arises because the two basis

functions q$)(x) and q$’)( y) are weighted in (11) by two’

different expansion coefficients 1$) and l~z), respectively.

On the other hand, h= must approach one and the same

constant as x ~ X. or as y ~ YO, which means that lJ1) =
T(2)

~o. ,.

(1) and Ii’) are set equal in theIf the two unknowns 10

matrix equation (13), the corresponding columns appear

to be added together (Zj~l) and Z&) are added to 2$2)

and Z$~2), respectively), thus forming a single column. In

order to maintain the symmetry of the [Z] matrix, the row
(11) and Z&2)with elements Zoj will be added to that with

elements Z&~) and Z&~), respectively, thus forming a

single row. This leads to

1(20)

The sum terms in (2$1)+ 2$2)) and (Z&+ Z&)) behave
like n-n/3 and m-n/3 for i # () and like n-3 and m-3

for i = O as n ~ w and m ~ W, respectively, which guaran-

tees the convergence of the above series.

It is worth noting that the reported incompleteness of

the edge conditions given in [2] has no influence on the

analysis of structures with infinitely thin metal inserts, e.g.
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‘Omi‘LrS4‘:E
o .5 1.0 0 .5 1.0 0 .5 1.0

[X/a) + [X/al + [da] +

Fig. 5. Plots of the magnetic field components versus x at (y / a) = 0.85. Parameters: as in Fig. 3.

TABLE I
CUTOFF WAVENUMBERS (RAD/MM) OF THE FIRST EIGHT MODES IN A SINGLE-RIDGE WAVEGUIDE

Parameters: a = b = 9.5 mm; XO = 0.15 mm, y.= 1

1!

Mode 1 2 3 4 5 6 7 8

Present method 0.0928 0.3332 0.3810 0.5262 0.6654 0.6912 0.7456 0.8294

Ref. [11] 0.0930 0.3332 0.3881 0.5265 0.6654 0.6913 0.7456 0.8298

(a)

(c)

(e)

mm.

(b)

(d)

Fig. 6. Electric field lines of the first six modes in a ridge waveguide: (a) first (dominant) mode; (b) second mocle; (c) third

mode; (d) fourth mode; (e) fifth mode; (f) sixth mode. Parameters: (b/a) = 0.5, (XO /a)= (YO /a) = 0.2.
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TABLE II
MODE COUPLING COEFFICIENTS Q,, FOR THE FIRST TEN MODES IN A RIDGE WAVEGUIDE

i+ 1 2 3 4 5 6 7 8 9 10
L

1 + 1.0000 – 0.0005 – 0.0002 – 0.0003 – 0.0002 – 0.0005 + 0.0001 – 0.0003 + 0.0002 + 0.0000
2 + 1.000 – 0.0003 – 0.0005 – 0.0004 – 0.0009 + 0.0003 – 0.0006 + 0.0004 + 0.0000
3 + 1.0000 – 0.0005 – 0.0004 – 0.0002 + 0.0000 – 0.0004 – 0.0010 – 0.0003
4 + 1.0000 – 0.0008 – 0.0004 + 0.0000 – 0.0007 – 0.0018 – 0.0005
5 + 1.0000 – 0.0002 + 0.0000 – 0.0007 – 0.0019 – 0.0005
6 + 1.0000 + 0.0001 – 0.0003 + 0.0005 – 0.0001
7
8

+ 1.0000 + 0.0002 – 0.0009 – 0.0004
+ 1.0000

9
– 0.0012 – 0.0002
+ 1.0000 – 0.0025

10 + 1.0000

Parameters: as in Fig. 6

@

Y A

b

R

OR ax
(a) (b) (c)

Fig. 7. (a) Cross section of a circular ridge waveguide. (b) Cross section of a shielded metal rod. (c) A quarter of either
structure.

planar structures. For these structures the expanded sur-

face current is the difference between the tangential

magnetic fields just in front of and just behind the metal

insert. The constants approached by the two tangential

fields at the edge(s) cancel each other. The surface cur-

rent component perpendicular to the edge, which is equal

to the discontinuity in the magnetic field component

parallel to the edge, must then vanish at the edge. This

explains why the early work with the SD technique (e.g. in

[61and [7]) failed to detect this incompleteness.

Fig. 4 shows the same plot as Fig. 3 after supplement-

ing the basis functions by (18). The field vanishes now

over the ridge and has a step discontinuity at the ridge

surfaces. Fig. 5 shows plots for hX, hY, and h, versus x at

a y = constant line which goes through the ridge. The
tangential components hy and h= show step discontinu-

ities at the air–ridge interface, which are accompanied by

the so-called Gibbs phenomenon. On the other hand, hX

is continuous there.

A comparison between this method and that presented

in [11] is illustrated in Table I, which shows the cutoff

wavenumbers of the first eight modes in a single-ridge
waveguide. Except for the third mode, for which the error

is less than just 290, the agreement between the two

methods is excellent.

The electric field lines of the first six modes in a ridge

waveguide with different dimensions are shown in Fig. 6.

The field is concentrated below the ridge for the first

(dominant) mode only. According to [121, the dominant
mode is “hybrid” while the other modes are “trough”

because their corresponding fields are distributed every-

where over the cross section.

The accuracy of the field distributions corresponding to

the different modes is finally tested by calculating the

mode coupling coefficient, which is given by

Q,j = ~ h$!)h:) dS (21)
s—s.

where h!) is the axial magnetic field corresponding to the

ith mode. According to [13, sec. 5.2],

Qij = Qij/(QiiQjj)”2 = ~ij.

Table II shows Q,, for the first ten modes. The Qij

resemble their exact values given in [13] to a very great

extent.

IV. CIRCULAR INSERTS

Fig. 7(a) shows the cross section of a symmetrical

circular ridge waveguide, while Fig. 7(b) shows that of a

shielded metal rod, The two guides represent a low-loss

alternative to the corresponding guides showfl in Fig. 2,

where the rectangular metal inserts have been replaced

by circular or semicircular ones. The losses for a circular

metal inserts are less than those for an equivalent rectan-

gular one because of the absence of sharp edges. As in
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the previous case, the structure shown in Fig. 7(c) will be

analyzed. Again only one type of symmetry will be consid-

ered, namely that with electric walls at all sides.

Because Co contains no sharp edges, the basis func-

tions qi and $, in (2) and (7), respectively, can be chosen

as

qt(9)=cos2i.9, i=o,l,2, ””” (22)

gZ(q)=sin2ip, i=l,2, . . . . (23)

Following a rather lengthy but straightforward procedure,

the elements of the [Z] matrix in (5) and of the [Y] matrix ,s

in (10), which characterize the TE and TM modes, re-

spectively, are given by

Zc, =(–l)’+j

(24)

(25)

\s

where

C, = cos2iaE,,L S1= sin2ia.~
Fig. 8.

‘E= ‘21(knrnR)

“~=(:)z+(?)za~=tan-’(a‘2’)
Fig. 8 shows three-dimensional plots of the axial mag-

netic field, h=, and the axial electric field, e=, correspond-

ing to the first TE mode and the first TM mode, respec-

tively, in a waveguide with the cross section of Fig. 7(c).

Both fields vanish over the metal insert. As in Fig. 4, h=

has a step discontinuity at the surface of the insert, which

is accompanied by Gibbs’s phenomenon. On the other

hand, eZ is continuous everywhere.

Table III and Table IV compare the cutoff wavenum-

bers of the first five TE modes and the first five TM
modes, respectively, in a circular ridge waveguide with

those in a conventional ridge waveguide with the same

ridge cross-sectional area. The cutoff wavenumbers (and

hence the propagation constants and the wave

impedances) of the corresponding modes differ very little,

which indicates that the two guides have nearly the same

guiding performance. On the other hand, the losses in the

circular ridge waveguide are much less than those in the

conventional ridge waveguide, owing to the absence of

sharp edges. The losses accompanied with a sharp edge

are due to the axial (parallel to the edge) surface current

component which becomes infinite at the edge.

1,0

0 hz

.1 .0/,4

Y x

(a)

N. 8

Y x

(b)

Three-dimensional dots of (a) the axial magnetic field

1,0

,5ez

o
J. D

, h., and

(b; the axial electric field, e;, corresponding to the-first TE mode and

the first TM mode, respectively, in a waveguide with the cross section of

Fig. 7(c). Parameters: (b/a) = 1.0, (R /a)= 0.5.

TABLE III

NORMALIZED CUTOFF WAVENUMBERS(kC a / m) OF THE
FIRST FIVE TE MODES

Mode 1 2 3 4 5

Circular ridge 1.0941 1.8348 2.0993 2.5996 2.9067
Conventional 1.0603 1.7001 2.0913 2.5422 2.8856

TABLE IV
NORMALIZED CUTOFF WAVENUMBERS OF THE FIRST

FWE TM MODES

Mode 1 2 3 4 5

Circular ridge 2.3712 3.2088 4.0716 4.2606 4.7436

Conventional 2.4012 3.3139 4.1751 4.3647 4.7434

Finally the electric and magnetic field lines of the first

three TE modes and the first three TM modes in a

circular ridge waveguide are shown in Fig. 9 and Fig. 10,

respectively. The field lines are distributed everywhere

over the cross section and are not concentrated near the

ridge. In fact, none of these modes is the dominant mode.

The dominant mode of the structure does not possess the

type of symmetry considered here.
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(a)

(b)

‘-/L----

---L/l\\

(c)

Fig. 9. Electric field lines of the first three TE modes in a circular

ridge waveguide: (a) First mode; (b) second mode; (c) third mode.
Parameters: (b/a) = 0.5, (R/a)= 0.3.

V. CONCLUSION

Rectangular waveguides with rectangular and circular

metal inserts have been analyzed by the generalized spec-

tral-domain (GSD) technique, developed in [1]. The anal-

ysis has shown that the magnetic field component parallel

to a metal edge approaches a constant value (and does

not vanish, as the corresponding electric field component

does) as the edge is approached. The accuracy of the

cutoff wavenumbers has been demonstrated by compari-

son with the variational analysis. The accuracy of the field

distributions has been demonstrated by two- and three-

dimensional plots which have shown that the calculated

field is negligibly small over the insert’s cross section. A

CPU time of a few seconds per mode on a Siemens

7.890F is typical. This CPU time is required for the

determination of the cutoff wavenumber as well as the

field distribution over the guide’s cross section. The

(b)

(c)

Fig. 10. Magnetic field lines of the first three TM modes in a circular
ridge waveguide: (a) first mode; (b) second mode; (c) third mode.

Parameters: as in Fig. 9.

method then is very sparing of CPU time compared with

other methods.
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