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Abstract —The generalized spectral-domain (GSD) technique,
which was developed and tested for some special cases in [1], is
applied to the analysis of rectangular waveguides with rectangu-
lar and circular metal inserts. These include conventional ridge
waveguides, circular-ridge waveguides, and rectangular coaxial
lines with either rectangular or circular inner conductors. The
numerical results show that the edge behavior of the electromag-
netic field described in [2] is incomplete. A constant term must
be added to the expansion of the magnetic field component
which is parallel to the edge. Excellent agreement with other
publications is achieved, with a drastic reduction of CPU time
for the conventional ridge waveguide. The accuracy of the re-
sults is demonstrated by two- and three-dimensional plots of the
field distributions.

I. INTRODUCTION

ALERKIN’s method in the spectral domain, which

is known in the literature simply as the spectral-
domain (SD) technique, has been developed and applied
to the analysis of a variety of planar structures (see, e.g.,
[3]-[7D). It has proved to be a very efficient method with
respect to accuracy, CPU time, and storage requirements.
On the other hand, the method is restricted to the analy-
sis of structures with infinitely thin metal sheets.

In the general analysis of waveguides with metal in-
serts, which was recently presented in {1], two formula-
tions have been developed: the matrix formulation and
the moment method formulation. The latter is a general-
ization of the SD technique which can analyze waveguides
with electrically thick metal inserts as well. It will be
called the generalized spectral-domain (GSD) technique.
It has been shown in [1] that applying the GSD technique
to planar structures leads to the same equations as the
conventional SD technique. In this paper, the GSD tech-
nique is applied to rectangular waveguides with rectangu-
lar or circular metal inserts. These include conventional
ridge waveguides, ridge waveguides with half circular
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ridges, and rectangular coaxial waveguides with either
rectangular or circular inner conductors.

According to [1], the axial magnetic field or the normal
electric field at the surface of the metal insert is expanded
with respect to suitable basis functions which satisfy the
edge conditions, if any. The vanishing of the tangential
electric field or the normal magnetic field at the metal
surface is then tested by the same basis functions (Galer-
kin’s procedure). If the basis functions for the axial mag-
netic field are chosen to satisfy the edge conditions given
in [2], the resulting field would not identically vanish
inside the metal insert. Such basis functions must become
zero as the edge is approached [2]. The right field can be
obtained if an additional basis function is used, which
becomes a constant as the edge is approached. This is an
indication that the edge conditions described in [2] are
not complete.

II. Basic FoRMULATION

Consider the waveguide with metal insert shown in Fig.
1. The direction of propagation, in which the structure is
uniform, is taken along the z axis with a corresponding
propagation constant B. As has been shown in [1], TE
modes are expressed as

a®
h’z = Z -~ k%hhzn
n Pnh

;h) br(zh) .
h=—jB Z thhzn + Z ——\/F_—(Vtem X k)
n nh n ne

e:f‘%(hxze) (1)

where 4., h, and e are the axial magnetic, transverse
magnetic, and transverse electric field, respectively, with
the z dependence e /A7 being suppressed, &,, (e,,) is the
axial magnetic (electric) field of the nth TE (TM) mode in
the hollow waveguide (i.e., with the metal insert S, re-
moved), and k,, (k,.) is the corresponding cutoff wave-
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Fig. 1. Cross section of a waveguide with a metal insert.

number. P, (P,,) is the integral of A2, (e ,) over the
hollow wavegulde cross section S; V, and k are the
transverse component of the del operator and the unit
vector in the axial direction, respectively; and a{» and
b{™ are expansion coefficients to be determined.

According to the moment method formulation [1], the
axial magnetic field, &, at the contour C, is expanded in
terms of suitable basis functions 7, as

Rl = le’"h’- (2)

The expansion coefficients a{® and b{" are given in
terms of I, according to

a® =[N ][N ] k2L 1D) ' [CM I

b — (3)
Here a'®, p™, and I are column vectors with elements
a®, b and I, respectively; [A"] (A°]) is a diagonal
matrix with elements k2, (k2,), [I]is the identity matrix;
and k_ is the yet undetermined cutoff wavenumber (k2 =
— B?). The elements of [C"*] and [C"¢] are given by

1o
el E I (e 18

Crizlzh ¢ni(ﬁ 'Vthzn) dl
KoV P Co
Che = ‘/——95n1((n><k) Ve,)d.  (4)

k2 and the corresponding I are determined by solving the
characteristic equation

{kz[chh] ( 2[1 Ah]) Chh]+[che] [Che]} I
=[zZ]1=0 (5)

where the superscript ¢ denotes the transpose of the
matrix. TM modes, on the other hand, are expressed as

_ k2 a(e)
E Tp
ne
a(e)

e*Z‘/—; €zn

=—B—°-(l€><e> (6)

where e, is the axial electric field and a'® are expansion
coefficients to be determined. Expanding the normal elec-
tric field (7i-e) at the contour C, in terms of suitable
basis function ¢, as

(#-)le= L V.4 ™

the expansion coefficients a(® are given in terms of | Z
according to

a® = (kK2[11-[A]) " [C=T¥ (8)

where @ and V are column vectors with elements a(®
and V, respectwely The elements of [C%] are given by

ee
Cm

gSglem dl.

ne Cy

)

k2 and the corresponding V are determined by solving the
characteristic equation
[CY (k2111 [A]) '[Cee]v =

[YIV=0. (10)

III. RECTANGULAR INSERTS

Fig. 2(a) shows the cross section of a conventional ridge
waveguide, while Fig. 2(b) shows that of a rectangular
coaxial line. The rectangular coaxial line has recently
been proposed [8] for applications in communication
satellites. If we utilize symmetry, only one quarter of
either structure needs to be analyzed, e.g. That shown in
Fig. 2(c).

If &, and (7i-e) in (2) and (7), respectively, are rewrit-
ten as

holy—ye= LI (x), 0<x<x
holc,= ' 11
sl Boleozg=2IP0P(y), vo<y<b (11)
i
—eyl, o, = YVOD(x), 0<x<x,
(ﬁ'e)lc = !
’ +exix=x0=21/l(2)§z(2)())), y0<y<b
i
(12)

the characteristic equations in (5) and (10), respectively,
can be written as

[Z(u)] [Z(IZ)] o
[zGD] [Z2@)] “(2)} =0 (13)
[YdP] [Y(lé)] 1))

[Y(Zl)] [Y(ZZ)] l::j(z)] =0 (14)

where I®, I®, v, and V® are column vectors with
elements IV, 1@, VD and V@), respectively.
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Fig. 2. (a) Cross section of a conventional ridge waveguide. (b) Cross section of a rectangular coaxial line. (¢) A quarter of
either structure,

TE Modes

Only one type of symmetry will be considered, namely
that with a magnetic wall at side x =0 and electric walls
at the other three sides. Modes with this type of symmetry
include the dominant mode of the symmetrical ridge
waveguide. Other types of symmetry can similarly be
analyzed. The basis functions n"™(x) and n®(y), which
satisfy the 90° edge condltlons at (xg, y,), must behave
like |x —x,/*? and |y — yOI as x = x, and y - y,,
respectively, [2]. They are given by

- A-13 .
x _imx
nP(x) = 1—(—) } sin —

Xo X0

- b 21-1/3
-y
A(y)=[1-
n:7(y cos
( ) (b_)’o) }

(i—-1/2)mw(b-y)
(b“YO) '

i=1,2,---. (15)

Following the procedure described in [1] for TM modes,
the elements of the [ Z] matrix in (13) are given by

ap_ T4 Sin &, (7 = o) $in @, FOFD
Y 26 2" sin &, T
e8]
12) _
z? ‘2“ Z -1/2)
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((1—1/2)77+m(77- Q[;O))
7o - L((i=1/2)m —&,(m ~ )
2= K(m— llfo)[((i_.l/Z)ﬂ-_&n(ﬂ__lpo))u

J((l—l/Z)W+an(W ¢’0))] (17)

((l =1/2)m+a,(m— lﬁo))

where K =27%°7"1/2['(2/3) = 0.428769, J (x)= Bessel
function of the first kind, » =1/6, and §,,, = Kronecker
delta.

If the convergence of the series in (16) is investigated, it
can easily be shown that the sum terms in ZZP and Z{?
behave like n~7/% as n — o and that the sum term inzZ (122)
behaves like m ™"/ as m —> » (see, e.g., [9] for the asymp-
totic value of the Bessel functions).

The axial magnetic field as given by (11) and (15)
vanishes at the edge (x,, y,). The numerical results based
on this assumption, however, turned out to be incorrect.
Fig. 3 shows a three-dimensional plot of the axial mag-
netic field, /., corresponding to the dominant mode in a
ridge waveguide as a function of the transverse coordi-
nates. Although the field possesses a step discontinuity at
the ridge surfaces, it does not identically vanish over the
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Fig. 3. A three-dimensional plot of the axial magnetic field, %, corre-
sponding to the dominant mode in a ridge waveguide (the basis func-
tions in (18) are not considered). Parameters: (a /b) =1.0, (x, /a)= 0.3,
(yy/a)=0.7.

ridge. This effect is found to be independent of the
number of basis functions in (15), which indicates that
these functions are not a complete set.
A detailed investigation of the edge conditions derived
n [2] has shown that the edge behavior of the magnetic
field component which is parallel to the edge has been
assumed to be identical to that of the corresponding
electric field component. This assumption is, however,
incorrect because of the different boundary conditions
which must be satisfied by these two components. The
derivation of the edge conditions given in {10] shows that
although the electric field component which is parallel to
the edge must vanish at the edge, the corresponding
magnetic field component can approach a constant value
there. The higher spatial derivatives of the two compo-
nents are similar and obey the analysis of [2]. This ex-
plains the incompleteness of the basis functions given in
(15), which vanish at the edge. Additional basis functions,
which approach a constant value at the edge, are hence
necessary.
The analysis presented above remains valid if the fol-
lowing basis functions are added to those given in (15):
a(x) = ™
(x)=sin 2,
7 (y) =1. (18)
The corresponding Fourier transforms cannot be incorpo-
rated in (17) with i = 0 because (17) is valid only for the
basis functions given in (15). Instead, they are given by

295 (n—1/2)cos(n—1/2)¢q

%1,3 2 2 2
7 (7 /2~ (n=1/2)%43]
ﬁ(2)=; oy Sinm(m — o)
Om m(1+6,,) m
7@ = —sina,(7 — ¢) (19)

Investigating the convergence of series in (16) for
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Fig. 4. The same plot as in Fig. 3, with the basis functions in (18)
considered.

(i # 0, j = 0) shows that the sum terms in Z$Y, Z(?, and

Z$? behave like n=>/3, n=>/3, and m /3 as n > and
m —>0°, respectively, which means that the series are still
convergent. On the other hand, Z{P, Z§?, and Z{> do
not converge at all because their sum terms behave like
n !, n! and m~! as n—w and m —x, respectively.
This numerical problem arises because the two basis
functions 7{’(x) and n@(y) are weighted in (11) by two
different expansion coefficients I§¥ and I$?, respectively.
On the other hand, 4, must approach one and the same
constant as x — x, Or as y — y,, which means that [{¥ =
IP.

If the two unknowns I§" and I{? are set equal in the
matrix equation (13), the corresponding columns appear
to be added together (Z3V and ZGY are added to Z{?
and Z2?, respectively), thus forming a single column. In
order to maintain the symmetry of the [ Z] matrix, the row
with elements Z{" and Z{}® will be added to that with
elements Z§ and Z (22), respectwely, thus forming a
single row. Thxs leads to

wh (kca)z m \?
e (5]

2 sina,(m— ) sin &,

11 12) _
ZGP+Z5? =

= (1) =(1)
= &, sin @, i on
i) k.a\* a \?
Z(Zl) + Z(22) = — _q,g ¢ N
2a T 2¢,
= _ sin¥,(m = @g) cos ¥, ¢,
Z (1 + 6mO)'Ym —
m=0 €OS ¥,
77(2) 2
imMom

: — . (20)
[(7/2)° - 7263)]
The sum terms in (ZGY + ZG?) and (ZEP + Z$?) behave
like n='/* and m~"/3 for i # 0 and like n~> and m~3
for i =0 as n —»» and m — =, respectively, which guaran-
tees the convergence of the above series.
It is worth noting that the reported incompleteness of
the edge conditions given in [2] has no influence on the
analysis of structures with infinitely thin metal inserts, e.g.
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Fig. 5. Plots of the magnetic field components versus x at (y /a) = 0.85. Parameters: as in Fig. 3.

TABLE 1
CutorF WAVENUMBERS (RAD /MM) OF THE FIRsT E1GHT MODES IN A SINGLE-RIDGE WAVEGUIDE
Mode 1 2 3 4 5 6 7 8
Present method  0.0928  0.3332  0.3810 0.5262 0.6654 0.6912 0.7456  0.8294
Ref. [11] 0.0930 0.3332 0.3881 0.5265 0.6654 0.6913 0.7456 0.8298

Parameters: ¢ = b=9.5 mm; x,=0.15 mm, y,=1.7 mm.

J\
=

i

4

Fig. 6. Electric field lines of the first six modes in a ridge waveguide: (a) first (dominant) mode; (b) second mode; (¢) third
mode; (d) fourth mode; (e) fifth mode; (f) sixth mode. Parameters: (b /a)= 0.5, (x, /a) (yo/a)=02.
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_ TABLE II
MopbE CourLinG CoEFFICIENTS @, FOR THE FIrsT TEN MODES IN A RIDGE WAVEGUIDE

i— 1 2 3 4 5 6 7 8 9 10
i

1 +1.0000 —0.0005 -0.0002 -0.0003 -0.0002 -0.0005 +0.0001 -0.0003 -+0.0002 +0.0000
2 +1.000 —0.0003 -0.0005 -0.0004 -0.0009 -+0.0003 =0.0006 +0.0004 +0.0000
3 +1.0000 -0.0005 -0.0004 -0.0002 +0.0000 -0.0004 -0.0010 -0.0003
4 ‘ +1.0000 -0.0008 -0.0004 +0.0000 -0.0007 -0.0018 -0.0005
5 +1.0000 —-0.0002 +0.0000 —0.0007 -0.0019 -0.0005
6 +1.0000 +0.0001 -0.0003 +0.0005 ~-0.0001
7 +1.0000 -+0.0002 -0.0009 -—0.0004
8 +1.0000 -0.0012 -—0.0002
9 +1.0000 —0.0025

10 ' +1.0000
Parameters: as in Fig. 6
Y|
7 ’
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Fig. 7. (a) Cross section of a circular ridge waveguide. (b) Cross section of a shielded metal rod. (¢) A quarter of either
structure.

planar structures. For these structures the expanded sur-
face current is the difference between the tangential
magnetic fields just in front of and just behind the metal
insert. The constants approached by the two tangential
fields at the edge(s) cancel each other. The surface cur-
rent component perpendicular to the edge, which is equal
to the discontinuity in the magnetic field component
parallel to the edge, must then vanish at the edge. This
explains why the early work with the SD technique (e.g. in
[6] and [7]) failed to detect this incompleteness.

Fig. 4 shows the same plot as Fig. 3 after supplement-
ing the basis functions by (18). The field vanishes now
over the ridge and has a step discontinuity at the ridge
surfaces. Fig. 5 shows plots for &, h, and h, versus x at
a y = constant line which goes through the ridge. The
tangential components 4, and s, show step discontinu-
ities at the air-ridge interface, which are accompanied by
the so-called Gibbs phenomenon. On the other hand, &,
is continuous there.

A comparison between this method and that presented
in [11] is illustrated in Table I, which shows the cutoff
wavenumbers of the first eight modes in a single-ridge
waveguide. Except for the third mode, for which the error
is less than just 2%, the agreement between the two
methods is excellent.

The electric field lines of the first six modes in a ridge
waveguide with different dimensions are shown in Fig. 6.
The field is concentrated below the ridge for the first

(dominant) mode only. According to [12], the dominant
mode is “hybrid” while the other modes are “trough”
because their corresponding fields are distributed every-
where over the cross section.

The accuracy of the field distributions corresponding to
the different modes is finally tested by calculating the
mode coupling coefficient, which is given by

Q= [ P ds

§—Sg

(21)

where A" is the axial magnetic field corresponding to the
ith mode. According to [13, sec. 5.2],

= 1/2
Qij = Qij/(Qiinj) = 5ij-
Table II shows Q,] for the first ten modes. The Qij

resemble their exact values given in [13] to a very great
extent.

IV. CircULAR INSERTS

Fig. 7(a) shows the cross section of a symmetrical
circular ridge waveguide, while Fig. 7(b) shows that of a
shielded metal rod. The two guides represent a 1ow-10ss
alternative to the corresponding guides showi in Fig. 2,
where the rectangular metal inserts have been replaced
by circular or semicircular ones. The losses for a circular
metal inserts are less than those for an equivalent rectan-
gular one because of the absence of sharp edges. As in
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the previous case, the structure shown in Fig. 7(c) will be
analyzed. Again only one type of symmetry will be consid-
ered, namely that with electric walls at all sides.

Because C, contains no sharp edges, the basis func-
tions n; and &, in (2) and (7), respectively, can be chosen
as
i=0,1,2,---

n,(@) = cos2ig, (22)

(@) =sin2ip, i=1,2,--- (23)
Following a rather lengthy but straightforward procedure,
the elements of the [ Z] matrix in (5) and of the [Y] matrix
in (10), which characterize the TE and TM modes, re-

spectively, are given by

1+
szz(_l) !
© = C.C.B'B!
(kR L X 7
n=0m=0(1+8n0)(1+6m0)(k§_k5m)
»  © $.5.BB
4 Y Y 5 (24)
n=1m=1 nm
= = SSBB
v,=-(-0'""YE ¥ 55 (25)
n=1m=1"c nm
where
C,=cos2ia,, S, =sin2ia,,,
B =17, (k, R B ‘”2"|
1 21( nm ) I—Ex=k"mR
nmw\2 (mm\? ma
k§m=(——) +(T) anmztan_l(——[;). (26)
a n

Fig. 8 shows three-dimensional plots of the axial mag-
netic field, 4,, and the axial electric field, e,, correspond-
ing to the first TE mode and the first TM mode, respec-
tively, in a waveguide with the cross section of Fig. 7(c).
Both fields vanish over the metal insert. As in Fig. 4, 4.
has a step discontinuity at the surface of the insert, which
is accompanied by Gibbs’s phenomenon. On the other
hand, e, is continuous everywhere.

Table II1 and Table IV compare the cutoff wavenum-
bers of the first five TE modes and the first five T™M
modes, respectively, in a circular ridge waveguide with
those in a conventional ridge waveguide with the same
ridge cross-sectional area. The cutoff wavenumbers (and
hence the propagation constants and the wave
impedances) of the corresponding modes differ very little,
which indicates that the two guides have nearly the same
guiding performance. On the other hand, the losses in the
circular ridge waveguide are much less than those in the
conventional ridge waveguide, owing to the absence of
sharp edges. The losses accompanied with a sharp edge
are due to the axial (parallel to the edge) surface current
component which becomes infinite at the edge.
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Fig. 8. Three-dimensional plots of (a) the axial magnetic field, #,, and
(b) the axial electric field, e_, corresponding to the first TE mode and
the first TM mode, respectively, in a waveguide with the cross section of
Fig. 7(c). Parameters: (b /a)=1.0, (R /a)=0.5.

TABLE III
NormavLizep Cutorr WAVENUMBERS (k.4 /) OF THE
FirsT Five TE MobDEs
Mode 1 2 3 4 5

Circular ridge 1.0941 1.8348 2.0993 2.5996 2.9067

Conventional 1.0603 1.7001 2.0913 2.5422 2.8856
TABLE IV
NoRrRMALIZED CUTOFF WAVENUMBERS OF THE FIRST
Frve TM MobEgs
Mode 1 2 3 4 5

Circular ridge 2.3712 32088 4.0716 4.2606 4.7436
Conventional 2.4012 3.3139 4.1751 4.3647 4.7434

Finally the electric and magnetic field lines of the first
three TE modes and the first three TM modes in a
circular ridge waveguide are shown in Fig. 9 and Fig. 10,
respectively. The field lines are distributed everywhere
over the cross section and are not concentrated near the
ridge. In fact, none of these modes is the dominant mode.
The dominant mode of the structure does not possess the
type of symmetry considered here.
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Fig. 9. Electric field lines of the first three TE modes in a circular
ridge waveguide: (a) First mode; (b) second mode; (¢) third mode.
Parameters: (b/a)=0.5, (R/a)=03.

V. CoNCLUSION

Rectangular waveguides with rectangular and circular
metal inserts have been analyzed by the generalized spec-
tral-domain (GSD) technique, developed in [1]. The anal-
ysis has shown that the magnetic field component parallel
to a metal edge approaches a constant value (and does
not vanish, as the corresponding electric field component
does) as the edge is approached. The accuracy of the
cutoff wavenumbers has been demonstrated by compari-
son with the variational analysis. The accuracy of the field
distributions has been demonstrated by two- and three-
dimensional plots which have shown that the calculated
field is negligibly small over the insert’s cross section. A
CPU time of a few seconds per mode on a Siemens
7.890F is typical. This CPU time is required for the
determination of the cutoff wavenumber as well as the
field distribution over the guide’s cross section. The

T
o

Fig. 10. Magnetic field lines of the first three TM modes in a circular
ridge waveguide: (a) first mode; (b) second mode; (¢) third mode.
Parameters: as in Fig. 9.

method then is very sparing of CPU time compared with
other methods.
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